

TECHNICAL DATA SHEET

DESCRIPTION

ProAnchor Elite is two component, moisture tolerant, 100% solids, high modulus epoxy gel adhesive approved for use in cartridges and in bulk for anchoring in cracked and un-cracked concrete and internally threaded inserts in un-cracked concrete. Meets requirements of ACI 355.4 and ICC-ES AC308 per IAPMO ER-690.

USE

ProAnchor Elite is ideal for anchoring bolts, dowels, and reinforcing steel in concrete. It is also ideal for vertical and horizontal structural bonding and patching. It may also be used to seal cracks and set injection ports prior to injection grouting.

FEATURES

- High-strength structural adhesive
- Ideal for anchoring dowels, bolts, reinforcing steel and threaded rod
- Fast-setting
- Suitable for dry, water saturated and water-filled holes
- Qualified for Seismic Design Categories A through F.
- Made in the USA in accordance with CFR 49 section 50101.

PROPERTIES

See Appendix A. For a complete list of properties, tools, and accessories, refer to IAPMO ER-690

APPLICABLE STANDARDS

ASTM C881, AASHTO M235: Types I, II, IV & V; Grade 3; Classes A, B & C^*

*Except for gel time due to fast set Multiple state DOT approvals IBC/IRC

UL Certified – Drinking Water System Components to NSF/ANSI/CAN 61

Acceptable for use in USDA inspected facilities

VOC

ProAnchor Elite has a VOC content of 0 g/L. Compliant with all Canadian and U.S. VOC regulations including Federal EPA, OTC, LADCO, SCAQMD & CARB

Packaging

PRODUCT CODE	Packaging	Size oz	Milliliters/Liter
100861	Cartridge	8.6	254ml
100862	Cartridge	21.2	627ml
100863	Cartridge	53	1.6L
100864	Pails	10 gal	37.8L

STORAGE

The material should be stored at 40°-95°F (5°-35°C). Use prior to the "best used by date" on product label. Do not expose stored product to cold or freezing temperature below 35°F (2°C) for any length of time

Surface Preparation:

Ambient and substrate temperature conditions: 43° and 110°F (6° and 43°C) for structural applications per UES 690.

38° and 125°F (3° and 52°C) for transportation infrastructure applications to AASHTO M235 & ASTM C881.

Surface to be bonded must be clean and sound. Remove dust, dirt, grease, laitance, curing compounds and other foreign matter by sandblasting, mechanical abrasion or hydro blasting. For drilled holes, clean with a bristle brush.

Remove all water and dust with clean compressed air prior to installation. Air and surface temperature must be 38°F (3°C) or above.

Mixino

Condition material to 65°- 85°F (18°- 29°C) before using.

Cartridges:

Remove the protective cap and "pre-purge" the cartridge before putting on the static mixer to ensure uniform mixing. Screw on the static mixing nozzle and dispense epoxy until the product is a uniform gray with no streaking.

File Date: 4/27/2023

TECHNICAL DATA SHEET

Bulk:

Premix each component, then mix equal volumes of Part A and Part B for 3 minutes with a low speed drill, a jiffy mixer or paddle. Mix only what can be used during the pot life. For bulk dispensing equipment for structural applications, refer to UES 690 Table 5. Under normal operation, the bulk pump must be capable of dispensing the individual components at a 1:1 mix ratio by volume with a tolerance of ± 2%.

Placement:

Step 1: Drill hole in concrete using a rotary-percussion power drill (rotary-hammer drill) and a carbide-tipped SDS or SDS-Plus type drill bit complying with ANSI B212.15-1994, to the diameter and embedment depth adhering to minimum spacing, minimum edge distance, and minimum concrete member thickness.

Caution: Wear suitable eye and skin protection. Avoid inhalation of dust during drilling and debris removal.

Step 2: Blow out hole using oil-free compressed air at a minimum of 70 psi with a nozzle. While blowing air, insert the nozzle into the hole until in contact with the bottom for not less than one second, and then withdraw.

Step 3: Insert a cleaning brush for the proper drill hole diameter. Thrust the brush to the bottom of the borehole while twisting. Once the brush is in contact with the bottom of the hole, turn the brush one-half revolution, and then quickly withdraw the brush with a vigorous, twisting pull. Repeat.

Step 4: Repeat blow out of hole with air as per Step 2 above. Concrete shall be dry before injection of adhesive.

Step 5: When using cartridge insert the cartridge into the extrusion tool, and attach the supplied mixing nozzle to the cartridge. Do not modify mixing nozzle. Prior to injection, dispense material through the mixing nozzle in a continuous bead until a uniform light gray color is achieved. Initial dispensed material will be darker gray in color and should not be used for installation. After uniform light gray color is achieved, insert the end of the mixing nozzle into the borehole until in contact with the bottom. Then, dispense the adhesive while slowly withdrawing the nozzle until borehole is approximately 1/2 - 2/3 full, and then withdraw the mixing nozzle. Keep the nozzle attached on partially used cartridges. A new mixing nozzle must be used if the gel time has been exceeded between injections.

Step 6: Mark the anchor rod with the required embedment depth. Insert the clean and oil-free anchor rod into the adhesive in the borehole, turning it slowly as it is pushed downward until contact with the bottom of the borehole. Make sure the hole is completely filled with adhesive and that no gaps appear between the anchor rod and borehole.

Step 7: Adjust the alignment of the anchor in the hole immediately. Do not disturb it between the Gel Time and the Minimum Cure Time. Do not torque or apply load to the anchor until the Recommended Cure Time.

CLEAN UP

Tools and Equipment: Clean before the epoxy sets. Use xylene or Citrus Cleaner J48.

LIMITATIONS

FOR PROFESSIONAL USE ONLY

Per ACI 355.4, for anchoring applications, concrete should be a minimum of 21 days old prior to anchor installation.

Building Code Requirements for Structural Concrete (ACI 318-11 /ACI 318-14) requires the Installer to be certified where adhesive anchors are to be installed in horizontal or overhead installations.

Do not thin with solvents

Surface and ambient temperature must be 38°F (3°C) or above

Do not expose stored product to cold or freezing temperature below 35°F (2°C) for any length of time

File Date: 4/27/2023

TECHNICAL DATA SHEET

PRECAUTIONS

READ SDS PRIOR TO USING PRODUCT

- Component A Irritant
- Component B Corrosive
- Product is a strong sensitizer
- Use with adequate ventilation
- Wear protective clothing, gloves and eye protection (goggles, safety glasses and/or face shield)
- Keep out of the reach of children
- Do not take internally
- In case of ingestion, seek medical help immediately
- May cause skin irritation upon contact, especially prolonged or repeated. If skin contact occurs, wash immediately with soap and water and seek medical help as needed.
- If eye contact occurs, flush immediately with clean water and seek medical help as needed
- Dispose of waste material in accordance with federal, state and local requirements
- Cured epoxy resins are innocuous

MANUFACTURER

Dayton Superior Corporation 1125 Byers Road Miamisburg, OH 45342

Customer Service: 888-977-9600 Technical Services: 877-266-7732 Website: www.daytonsuperior.com

WARRANTY

Dayton Superior Corporation ("Dayton") warrants for 12 months from the date of manufacture or for the duration of the published product shelf life, whichever is less, that at the time of shipment by Dayton, the product is free of manufacturing defects and conforms to Dayton's product properties in force on the date of acceptance by Dayton of the order. Dayton shall only be liable under this warranty if the product has been applied, used, and stored in accordance with Dayton's instructions, especially surface preparation and installation, in force on the date of acceptance by Dayton of the order. The purchaser must examine the product when received and promptly notify Dayton in writing of any non-conformity before the product is used and no later than 30 days after such nonconformity is first discovered. If Dayton, in its sole discretion, determines that the product breached the above warranty, it will, in its sole discretion, replace the non-conforming product, refund the purchase price or issue a credit in the amount of the purchase price. This is the sole and exclusive remedy for breach of this warranty. Only a Dayton officer is authorized to modify this warranty. The information in this data sheet supersedes all other sales information received by the customer during the sales process. THE FOREGOING WARRANTY SHALL BE EXCLUSIVE AND IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND ALL OTHER WARRANTIES OTHERWISE ARISING BY OPERATION OF LAW, COURSE OF DEALING, CUSTOM, TRADE OR OTHERWISE.

Dayton shall not be liable in contract or in tort (including, without limitation, negligence, strict liability or otherwise) for loss of sales, revenues or profits; cost of capital or funds; business interruption or cost of downtime, loss of use, damage to or loss of use of other property (real or personal); failure to realize expected savings; frustration of economic or business expectations; claims by third parties (other than for bodily injury), or economic losses of any kind; or for any special, incidental, indirect, consequential, punitive or exemplary damages arising in any way out of the performance of, or failure to perform, its obligations under any contract for sale of product, even if Dayton could foresee or has been advised of the possibility of such damages. The Parties expressly agree that these limitations on damages are allocations of risk constituting, in part, the consideration for this contract, and also that such limitations shall survive the determination of any court of competent jurisdiction that any remedy provided in these terms or available at law fails of its essential purpose.

TECHNICAL DATA SHEET

Appendix A

TABLE 1 – ProAnchor Elite ADHESIVE DISPENSING TOOLS AND MIXING NOZZLES

	8.6 oz. (254 ml)	21.2 oz. (627 ml)	53 oz. (1.6 L)	10 Gallon	(38 L) Kit		
Package Size	Cartridge	Cartridge	Cartridge	Resin	Hardener		
Part #	100861	100862	100863	100864A	100864B		
Manual Dispensing Tool	100884	100889					
Pneumatic Dispensing Tool		100891	100893	100893 Pump			
Battery Tool		100892					
Recommended Mixing Nozzle		100878 or 100879		100	879		
SDS Brush Adaptor			100876				
Brush Extension			100877				
Nozzle Extension Tubing			100882				
Retention Wedge			100883				

Threaded Rod

Reinforcing Bar (Rebar)

Internally Threaded Insert

FIGURE 1 – ProAnchor Elite HIGH STRENGTH ADHESIVE ANCHOR
SYSTEM TYPICAL ANCHOR ELEMENTS

FIGURE 2 – ProAnchor Elite HIGH STRENGTH ADHESIVE ANCHOR SYSTEM DISPENSING EQUIPMENT

FIGURE 3 – ProAnchor Elite HIGH STRENGTH ADHESIVE ANCHOR SYSTEM BRUSHES, NOZZLES, EXTENSION TUBES, AND PISTON PLUGS

TECHNICAL DATA SHEET

TABLE 2 – ProAnchor Elite INSTALLATION INFORMATION FOR THREADED RODS

Char	acteristic	Symbol	Units			Nominal	Anchor Eler	ment Size		
Fractional	Size	da	in.	3/8	1/2	5/8	3/4	7/8	1	1 1/4
Threaded Rod	hreaded Rod Drill Size		in.	7/16	9/16	3/4	7/8	1	1 1/8	1 3/8
Maximum	A36/A307 Carbon Steel	_	Ft-lb	10 (14)	25 (34)	50 (68)	90 (122)	125 (170)	165 (224)	280 (381)
Tightening Torque	A193-B7 Carbon Steel or F593 SS	T_{inst}	(N-m)	16 (22)	30 (45)	60 (81)	105 (142)	125 (170)	165 (224)	280 (381)
Brush Part No.		-	-	100865	100867	100869	100871	100872	100873	100874
Brush Length		-	in.	6	6	6	6	9	9	9
Piston Plug Part I	Piston Plug Part No.		-	100895	100897	100899	100901	100902	100903	100904
Piston Plug Color		-	-	Black	Blue	Yellow	Green	Black	Orange	Brown

TABLE 3 – ProAnchor Elite INSTALLATION INFORMATION FOR REINFORCING BARS

Charact	eristic	Symbol	Units			Nor	minal Anch	or Element	Size		
US Reinforcing	Size	da	in.	#3 (0.375)	#4 (0.50)	#5 (0.625)	#6 (0.75)	#7 (0.875)	#8 (1.00)	#9 (1.128)	#10 (1.27)
Bar	Drill Size	do	in.	1/2	5/8	3/4	7/8	1	1 1/8	1 3/8	1 1/2
Brush Part No.		-	-	100865	100868	100869	100871	100872	100873	100874	100875
Brush Length		-	in.	6	6	6	6	9	9	9	9
Piston Plug Part N	lo.	-	-	100895	100898	100899	100901	100902	100903	100904	100905
Piston Plug Color			-	Black	Red	Yellow	Green	Black	Orange	Brown	Gray

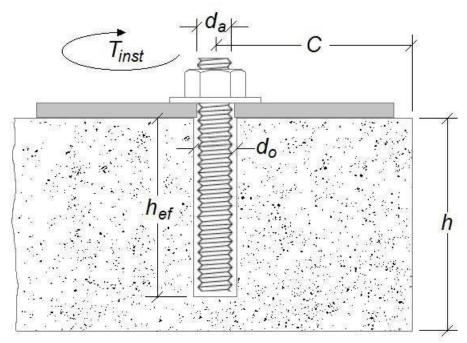


FIGURE 4 - ProAnchor Elite HIGH STRENGTH ADHESIVE ANCHOR WITH THREADED RODS

TECHNICAL DATA SHEET

TABLE 4 – ProAnchor Elite INSTALLATION INFORMATION FOR INTERNALLY THREADED INSERT

Char	acteristic	Symbol	Units		Nomi	nal Anchor Elem	ent Size	
Fractional	Insert Part #			PS2-38 or PS6-38	PS2-12 or PS6-12	PS2-58 or PS6-58	PS2-34 or PS6-34	PS2-1 or PS6-1
Internally	Internal Thread Size	dt	inTPI	3/8-16	1/2-13	5/8-11	3/4-10	1-8
Threaded	Drill Size	do	in.	1/2	5/8	7/8	1	1 1/2
Insert Thread Depth ¹			in.	1	1	1½	11/2	2
Maximum	A36/A307 Carbon Steel	_	Ft-lb	10 (14)	25 (34)	50 (68)	90 (122)	165 (224)
Tightening Torque	A193 B7 Carbon Steel or F593 SS	Tinst	(N-m)	16 (22)	30 (45)	60 (81)	105 (142)	165 (224)
Thread Depth ¹		ht	in.	0.945	0.945	1.475	1.475	2.000
Brush Part No.				100866	100868	100871	100872	100875
Brush Length			in.	6	6	6	9	9
Piston Plug Part No.	Piston Plug Part No.			100895	100898	100901	100902	100905
Piston Plug Color				Black	Red	Green	Black	Grey

For SI: 1 inch = 25.4 mm

 $[{]f 1}$ Minimum bolt length shall equal the sum of thread depth plus the thickness of attachments.

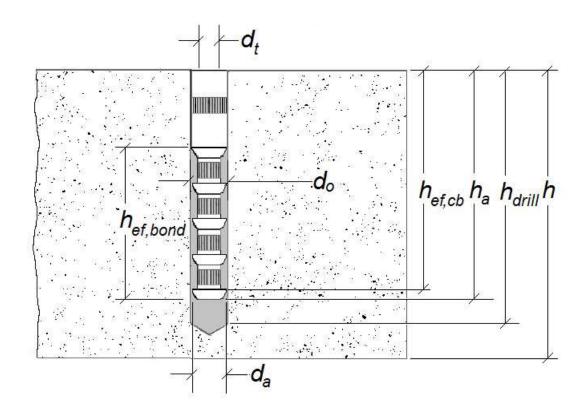


FIGURE 5 – ProAnchor Elite HIGH STRENGTH ADHESIVE ANCHOR WITH INTERNALLY THREADED INSERT

TECHNICAL DATA SHEET

TABLE 5 - ProAnchor Elite WORKING TIME AND FULL CURE TIME SCHEDULE^{1,2,3}

System	Concrete Temperature	Working Time ¹	Full Cure Time ²
	43 °F (6 °C)	45 minutes	144 hours
ProAnchor Elite	50 °F (10 °C)	35 minutes	72 hours
	75 °F (24 °C)	16 minutes	7 hours
	90 °F (32 °C)	12 minutes	4 hours
	110 °F (43 °C)	3 minutes	2 hours

¹ Working and full cure times are approximate and may be linearly interpolated between listed temperatures and are based on cartridge/nozzle system performance.

TABLE 6 - MILWAUKEE TOOL VACUUM DRILL COMPONENTS

Part #	Drill Type	Drill Bit Size in.	Overall Length in.	Useable Length in.
48-20-2102		7/16	13	7 7/8
48-20-2106		1/2	13	7 7/8
48-20-2110	SDS+	9/16	14	9 1/2
48-20-2114		5/8	14	9 1/2
48-20-2118		3/4	14	9 1/2
48-20-2152		5/8	23	15 3/4
48-20-2156		3/4	23	15 3/4
48-20-2160	CDC 14	7/8	23	15 3/4
48-20-2164	SDS-Max	1	25	17 1/2
48-20-2168		1 1/8	35	27
48-20-2172		1 3/8	35	27
8960-20		8 Gallon Dus	st Extractor Vacuum	

TABLE 7 - ProAnchor Elite DESIGN STRENGTH TABLE INDEX

Design	strength	Drilling Method	Threaded Rod	Reinforcing Bar	Internally Threaded Insert
Steel Strength	Nsa, Vsa		8	13	17
Concrete Breakout	N_{cb} , V_{cb} , V_{cp}		9	14	18
	Cracked Concrete	Harrison Delli	10	15	
	Uncracked Concrete	Hammer Drill	10	15	19
Bond Strength Design	Cracked Concrete)	11		
(SD)	Uncracked Concrete	Vacuum Bit Drill	11		
	Uncracked Concrete	Core Drill	12	16	

 $^{^2}$ Base material and ambient air temperature shall be from 43 to 110 °F (6 to 43 °C) during installation.

³ When ambient or base material temperature falls below 70 °F (21 °C), the adhesive shall be conditioned to 70 to 75 °F (21 to 24 °C) prior to use. A high-flow mixing nozzle (100879) may also be used to ease dispensing at colder temperatures or to increase the flow rate.

TECHNICAL DATA SHEET

TABLE 8 – ProAnchor Elite STEEL DESIGN INFORMATION FOR THREADED ROD¹

		Decima Information						Threaded Ro	d			
		Design Information	Symbol	Units	3/8"	1/2"	5/8"	3/4"	7/8"	1"	1 1/4"	
		Nominal Anchor Diameter	da	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.250	
		Normilal Anction Diameter	u _a	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(31.8)	
	Thr	Threaded Rod Cross-Sectional Area ⁴		in. ²	0.078	0.142	0.226	0.335	0.462	0.606	0.969	
	11111	edded Rod Cross-Sectional Area	A_{se}	(mm²)	(50)	(92)	(146)	(216)	(298)	(391)	(625)	
			N _{sa}	lb.	4,495	8,230	13,110	19,370	26,795	35,150	56,200	
	e 36 36	Nominal Strength as	IV _{SG}	(kN)	(20.0)	(36.6)	(58.3)	(86.2)	(119.2)	(156.4)	(250.0)	
	orad ade	Governed by Steel Strength		lb.	2,695	4,940	7,865	11,625	16,080	21,900	33,720	
	36 G		V _{sa}	(kN)	(12.0)	(22.0)	(35.0)	(51.7)	(71.5)	(97.4)	(150.0)	
	ASTM A36 Grade 36 F1554 Grade 36	Reduction Factor for Seismic Shear	$lpha_{V,seis}$		0.83	0.78	0.74	0.70	0.69	0.67	0.65	
	AST F1	Strength Reduction Factor for Tension ³	ϕ			0.75						
Carbon	-	Strength Reduction actor for Shear ³	φ					0.65				
Cart	5		Δ,	lb.	9,690	17,740	28,250	41,750	57,750	75,750	121,125	
	7 e 10	Nominal Strength as	N _{sa}	(kN)	(43.1)	(78.9)	(125.7)	(185.7)	(256.9)	(337.0)	(538.8)	
	3 B.	Governed by Steel Strength	.,	lb.	5,815	10,645	16,950	25,050	34,650	45,450	72,675	
	A19 54 G		V _{sa}	(kN)	(25.9)	(47.4)	(75.4)	(111.4)	(154.1)	(202.2)	(323.3)	
	ASTM A193 B7 STM F1554 Grade 105	Reduction Factor for Seismic Shear	$lpha_{V,seis}$		0.60	0.58	0.57	0.55	0.53	0.50	0.46	
	AS TM	Strength Reduction Factor for Tension ³	φ					0.75				
	AS	Strength Reduction Factor for Shear ³	φ					0.65				
	12		Δ,	Lb	7,750	14,190	22,600	28,390	39,270	51,510	82,365	
	%CM 16	Nominal Strength as	N _{sa}	(kN)	(34.5)	(63.1)	(100.5)	(126.3)	(174.7)	(229.1)	(366.4)	
SSS	CW1&CW2 4 & 316	Governed by Steel Strength		Lb	4,650	8,515	13,560	17,035	23,560	30,905	49,420	
Stainless	93 C		V _{sa}	(kN)	(20.7)	(37.9)	(60.3)	(75.8)	(104.8)	(137.5)	(219.8)	
Sta	F5 pe	Reduction Factor for Seismic Shear	$\alpha_{V,seis}$		0.65	0.62	0.60	0.58	0.57	0.55	0.53	
	STM	Strength Reduction Factor for Tension ²	φ					0.65				
	٩	Strength Reduction Factor for Shear ²	φ					0.60				

For **SI**: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers shall be appropriate for the rod strength and type.

² For use with load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ∮shall be determined in accordance with ACI 318-11 D4.4. Values correspond to a brittle steel element.

³ For use with load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ∮shall be determined in accordance with ACI 318-11 D4.4. Values correspond to a ductile steel element.

⁴ Cross-sectional area is the minimum stress area applicable for either tension or shear.

TECHNICAL DATA SHEET

TABLE 9 – ProAnchor Elite CONCRETE BREAKOUT DESIGN INFORMATION FOR THREADED ROD

Design Information	Symbol	Units			Threa	ded Rod			
Design mornadon	Symbol	Offics	3/8"	1/2"	5/8"	3/4"	7/8"	1"	1 1/4"
Minimum Embedment Depth	h _{ef,min}	in. (mm)	2 3/8 (60)	2 3/4 (70)	3 1/8 (79)	3 1/2 (89)	3 3/4 (95)	4 (102)	5 (127)
Maximum Embedment Depth	h _{ef,max}	in. (mm)	7 1/2 (191)	10 (254)	12 1/2 (318)	15 (381)	17 1/2 (445)	20 (508)	25 (635)
Effectiveness Factor for Cracked Concrete	k _{c,cr}	 SI	17 (7.1)						
Effectiveness Factor for Uncracked Concrete	K _{c,uncr}	 SI	24 (10)						
Minimum Spacing Distance	S _{min}	in. (mm)			Smin= Cmin				
Minimum Edge Distance	C _{min}	in. (mm)	2 3/16 (56)	2 13/16 (71)	3 3/4 (95)	4 3/8 (111)	5 (127)	5 5/8 (143)	6 7/8 (175)
Minimum Concrete Thickness	h _{min}	in. (mm)		[≥3.937] [≥100])	h_{ef} + 2d ₀ where d _o is the hole diameter				
Critical Edge Distance (Uncracked Concrete Only)	Cac				Section 3.2.	.6 of this re	oort		
Strength Reduction Factor for Tension, Concrete Failure Mode, Condition B ^{1,2,3}	φ				(0.65			
Strength Reduction Factor for Shear, Concrete Failure Mode, Condition B ^{1,2}	φ				(0.70			

For **SI**: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa

¹ Values provided for post-installed anchors with category as determined from ACI 355.4 given for Condition B. Condition B applies without supplementary reinforcement or where pullout (bond) or pryout govern, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, while condition A requires supplemental reinforcement.

² Values are for use with the load combinations Section 1605.2 of the IBC, ACI 318-14 5.3, or ACI 318-11 Section 9.2, as applicable, as set forth in ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of *ϕ* shall be determined in accordance with ACI 318-11 D.4.4.

 $^{^3}$ The anchor category, as set forth in ACI 318-14 17.3.3 (ACI 318-11 D.4.3), is Category 1.

TECHNICAL DATA SHEET

TABLE 10 - ProAnchor Elite BOND STRENGTH DESIGN INFORMATION FOR THREADED ROD IN HAMMER DRILLED HOLES 1.2.3.4

	S : 16							Threaded	Rod		
	Design Information		Symbol	Units	3/8"	1/2"	5/8"	3/4"	7/8"	1"	1 1/4"
Min	nimum Embedment	Denth	h _{ef,min}	in.	2 3/8	2 3/4	3 1/8	3 1/2	3 3/4	4	5
	a.m Embedment		пеј,тт	(mm)	(60)	(70)	(79)	(89)	(95)	(102)	(127)
Max	kimum Embedment	Depth	h _{ef,max}	in.	7 1/2	10	12 1/2	15	17 1/2	20	25
	1	With	110),//шх	(mm)	(191)	(254)	(318)	(381)	(445)	(508)	(635)
	Cracked	Sustained		psi (MPa)	1,231	1,088	1,231	979	1,044	1,153	1,109
Maximum	Concrete Characteristic	Load	$T_{k,cr}$	(ivii u)	(8.5)	(7.5)	(8.5)	(6.7)	(7.2)	(7.9)	(7.6)
Short Term	Bond Strength	No Sustained		psi (MPa)	1,414 (9.7)	1,248 (8.6)	1,414 (9.7)	1,127 (7.8)	1,201 (8.3)	1,327 (9.1)	1,275 (8.8)
Temperatur		Load With		psi	2,171	2,084	2,001	1,914	1,831	1,744	1,575
e 150 °F (66 °C)	Uncracked Concrete	Sustained		(MPa)	(15.0)	(14.4)	(13.8)	(13.2)	(12.6)	(12.0)	(10.9)
(66 C)	Characteristic	Load No Sustained	$T_{k,uncr}$	psi	2,497	2,397	2,301	2,201	2,105	2,005	1,810
	Bond Strength	Load		(MPa)	(17.2)	(16.5)	(15.9)	(15.2)	(14.5)	(13.8)	(12.5)
	Cracked	With		psi	1,083	957	1,083	861	918	1,018	974
	Concrete	Sustained Load	T	(MPa)	(7.5)	(6.6)	(7.5)	(5.9)	(6.3)	(7.0)	(6.7)
Maximum	Characteristic	No Sustained	$T_{k,cr}$	psi	1,244	1,101	1,244	992	1,057	1,170	1,118
Short Term Temperatur	Bond Strength	Load		(MPa)	(8.6)	(7.6)	(8.6)	(6.8)	(7.3)	(8.1)	(7.7)
e 180°F	Uncracked	With Sustained		psi (NAD-)	1,910	1,836	1,762	1,683	1,610	1,536	1,388
(82 °C)	Concrete	Load	$T_{k,uncr}$	(MPa)	(13.2)	(12.7)	(12.1)	(11.6)	(11.1)	(10.6)	(9.6)
	Characteristic No Sustained			psi (* 48.)	2,197	2,110	2,027	1,936	1,849	1,766	1,596
		Load With		(MPa) psi	(15.1) 493	(14.5) 437	(14.0) 493	(13.3) 391	(12.7) 419	(12.2) 465	(11.0) 446
	Cracked Concrete	Sustained		(MPa)	(3.4)	(3.0)	(3.4)	(2.7)	(2.9)	(3.2)	(3.1)
Maximum	Characteristic	Load	$T_{k,cr}$		567	502	567	451	479		512
Short Term	Bond Strength	No Sustained Load		psi (MPa)	(3.9)	(3.5)	(3.9)	(3.1)	(3.3)	535 (3.7)	(3.5)
Temperatur	Uncracked	With		psi	870	837	800	767	735	698	650
e 205 °F (96 °C)	Concrete	Sustained Load	gr.	(MPa)	(6.0)	(5.8)	(5.5)	(5.3)	(5.1)	(4.8)	(4.5)
(===,	Characteristic	No Sustained	$T_{k,uncr}$	psi	1,000	963	921	884	846	800	725
	Bond Strength	Load		(MPa)	(6.9)	(6.6)	(6.3)	(6.1)	(5.8)	(5.5)	(5.0)
Reductio	on Factor for Seismi	Tension ⁵	$\alpha_{N,seis}$			1.00		0.77	1.00	0.97	0.96
		Dry Concrete	ϕ_d					0.65			
s -	Strength	Water									
nuou ctior	Reduction	Saturated Concrete	ϕ_{ws}		0.	.65			0.55		
Continuous Inspection	Factors for Permissible		ϕ_{wf}				0.55			0	.45
S =	Installation	Water-Filled	Ψwf				0.33				5
	Conditions ^{6,7,8}	in Concrete	Holes in Concrete K _{wf}				1.00			0.96	0.88
		Dry Concrete	ϕ_d					0.65			
ic	Strength Reduction	Water Saturated	4		0	.55			0.45		
Periodic Inspection	Factors for	Concrete	φ _{ws}		0.	.55			0.45		
P. Ins	Permissible Installation	Water-Filled Holes	$\phi_{w\!f}$					0.45		T	
	Conditions ^{6,7,8}	in Concrete	K _{wf}				1.00			0.92	0.75
For SI: 1 inch = 25.4 i	mm, 1 lbf = 4.448 N, 1 p	si = 0.006897 MPa	•	•	•					•	

For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

¹ Characteristic bond strength values correspond to concrete compressive strength f'c = 2,500 psi (17.2 MPa). For uncracked concrete compressive strength f'c between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'c /2,500)01 (for SI: (f'c /17.2)01). For cracked concrete, no increase in bond strength is permitted.

² Lightweight concrete may be used by applying a reduction factor as given in ACI 318-14 17.2.6 or ACI 318-11 D.3.6 as applicable.

³ Short-term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long-term concrete temperatures are roughly constant over significant periods of time. The maximum long-term service temperature is 110 °F (43 °C).

⁴ Characteristic bond strength values are for sustained loads (when noted), including dead and live loads.

 $^{^{5}}$ For structures in regions assigned to Seismic Design Category C, D, E, or F, the bond strength values shall be multiplied by n, seis. α

⁶The tabulated value of ϕ applies when load combinations of Section 1605.2 of the IBC or ACI 318-14 5.3 (ACI 318-11 9.2), are used in accordance with ACI 318-14 17.3.3 (ACI 318-11 D.4.3). If the load combinations of ACI

³¹⁸⁻¹¹ Appendix C are used, the appropriate value of ϕ shall be determined in accordance with ACI 318 D.4.4.

⁷ The values of ϕ correspond to Condition B as described in ACI 318-14 17.3.3 (ACI 318-11 D.4.3) for post-installed anchors designed using the load combinations of IBC Section 1605.2. If the load combinations in ACI 318-11 Appendix C are used, the corresponding value of ϕ shall be determined.

⁸ The values of ϕ correspond to the anchor category as set forth in ACI 318-14 17.3.3 (ACI 318-11 D.4.3). The ϕ factor of 0.65 represents Category 1, 0.55 Category 2, and 0.45 Category 3.

TECHNICAL DATA SHEET

TABLE 11 - ProAnchor Elite BOND STRENGTH DESIGN INFORMATION FOR THREADED ROD IN MILWAUKEE TOOL VACUUM BIT DRILLED HOLES^{1,2,3,4}

								Threaded Rod		
	De	esign Information		Symbol	Units	5/8"	3/4"	7/8"	1"	1 1/4"
	Minimu	m Embedment Depth		h _{ef,} min	in. (mm)	3 1/8 (79)	3 1/2 (89)	3 3/4 (95)	4 (102)	5 (127)
	Maximu	ım Embedment Depth		hef, max	in. (mm)	12 1/2 (318)	15 (381)	17 1/2 (445)	20 (508)	25 (635)
		Cracked Concrete	With Sustained Load		psi (MPa)	1,022 (7.0)	874 (6.0)	900 (6.2)	1,031 (7.1)	992 (6.8)
Maxim Short T Tempera 150°	erm ature	Characteristic Bond Strength	No Sustained Load	Т _{к,} сr	psi (MPa)	1,175 (8.1)	1,005 (6.9)	1,031 (7.1)	1,183 (8.2)	1,140 (7.9)
(66 °C		Uncracked Concrete	With Sustained		psi (MPa)	1,831 (12.6)	1,766 (12.2)	1,701 (11.7)	1,636 (11.3)	1,505 (10.4)
		Characteristic Bond Strength	Load No Sustained Load	$T_{k,uncr}$	psi (MPa)	2,101 (14.5)	2,027 (14.0)	1,953 (13.5)	1,879 (13.0)	1,727 (11.9)
		Cracked Concrete	With Sustained Load		psi (MPa)	900 (6.2)	770 (5.3)	792 (5.5)	909 (6.3)	874 (6.0)
Maxim Short T Tempera	erm ature	Characteristic Bond Strength	No Sustained Load	T _{k,}	psi (MPa)	1,035 (7.1)	883 (6.1)	909 (6.3)	1,044 (7.2)	1,005 (6.9)
180 °		Uncracked Concrete	With Sustained Load		psi (MPa)	1,610 (11.1)	1,553 (10.7)	1,496 (10.3)	1,440 (9.9)	1,327 (9.1)
		Characteristic Bond Strength	No Sustained Load	$T_{k,uncr}$	psi (MPa)	1,849 (12.7)	1,784 (12.3)	1,718 (11.8)	1,653 (11.4)	1,523 (10.5)
Maxim		Cracked Concrete Characteristic	With Sustained Load	1	psi (MPa)	409 (2.8)	349 (2.4)	358 (2.5)	414 (2.9)	400 (2.8)
Short T Tempera	erm ature	Bond Strength	No Sustained Load	T _k , cr	psi (MPa)	470 (3.2)	405 (2.8)	414 (2.9)	474 (3.3)	456 (3.1)
(96 °		Uncracked Concrete	With Sustained Load		psi (MPa)	735 (5.1)	707 (4.9)	684 (4.7)	656 (4.5)	650 (4.5)
		Characteristic Bond Strength	No Sustained Load	$T_{k,uncr}$	psi (MPa)	842 (5.8)				693 (4.8)
Redu	uction Fac	ctor for Seismic Tensio		Øl,seis		1.00	0.77	1.00	0.97	0.96
no		ength Reduction ors for Permissible Installation	Dry Concrete	¢.						
Continuous Inspection	c	Conditions ^{6,7,8}	Water Saturated	Qws .		0.45 0.55		55	0.65	
	Strength Reduction Dry			Kws Ø				0.65		
Periodic Inspection	c	Installation Conditions ^{6,7,8}	Water Saturated	¢ws		0.45				0.55
	5.4 mm, 1 lbf :	= 4.448 N, 1 psi = 0.006897 MPa	Concrete	K _{WS}		0.89	0.96	1.00	1.00	1.00

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa
For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi
Characteristic bond strength values correspond to concrete compressive strength f c = 2,500 psi (17.2 MPa). For uncracked conferte compressive strength f c between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength way be increased by a factor of (f c /2,500)²⁶ (for SI: (f_c 17.2)²⁹). For cracked concrete, no increase in bond strength in permitted.

2 lightweight concrete may be used by applying a reduction factor as given in AQ 1318-14 17.2.6 or AQ 1318-11 D.3.6 as applicable.

3 short-term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long-term concrete temperatures are roughly constant over significant periods of time. The maximum long-term service temperature is 110 °F (43 °C).

4 Characteristic bond strength values are for sustained loads (when noted), including dead and live loads.

5 For structures in regions assigned to Sestimic Design Category C, D, E, or F the bond strength was shall be multiplied by n,seis: Q.

6 The tabulated value of \(\phi \) applies when load combinations of Section 1505.2 of the ISC or AQ 1318-11 9.2), are used in accordance with AQ 1318-14 17.3.3 (AQ 1318-11 D.4.3). (Fit D.4.3).

TECHNICAL DATA SHEET

TABLE 12 - ProAnchor Elite BOND STRENGTH DESIGN INFORMATION FOR THREADED ROD IN CORE DRILLED HOLES 1,2,3,4

	Design Information	n	Symbol	Units			Thread	led Rod			
			,		1/2"	5/8"	3/4"	7/8"	1"	1 1/4"	
M	inimum Embedment	Depth	h _{ef,min}	in. (mm)	2¾ (70)	3½ (79)	3½ (89)	3¾ (95)	4 (102)	5 (127)	
Ma	aximum Embedment	Depth	h _{ef,max}	in. (mm)	10 (254)	12 1/2 (318)	15 (381)	17 1/2 (445)	20 (508)	25 (635)	
Maximum Short Term Temperatur	Uncracked Concrete Characteristic	With Sustained Load	$T_{k,uncr}$	psi (MPa)	866 (6.0)	866 (6.0)	866 (6.0)	866 (6.0)	866 (6.0)	866 (6.0)	
e 150 °F (66 °C)	Bond Strength	No Sustained Load		psi (MPa)	996 (6.9)	996 (6.9)	996 (6.9)	996 (6.9)	996 (6.9)	996 (6.9)	
Maximum Short Term Temperatur	Uncracked Concrete Characteristic	With Sustained Load	$T_{k,uncr}$	psi (MPa)	766 (5.3)	766 (5.3)	766 (5.3)	766 (5.3)	766 (5.3)	766 (5.3)	
e 180 °F (82 °C)	Bond Strength	No Sustained Load		psi (MPa)	879 (6.1)	879 (6.1)	879 (6.1)	879 (6.1)	879 (6.1)	879 (6.1)	
SIC	Strength Reduction Factors for	Dry Concrete	ϕ_d				0.	65			
Tuour	Permissible Installation	Water Saturated	φws				0.	65			
Continuous	Conditions ^{5,6,7}	Concrete	K _{ws}				1.	00			
5	Strength Reduction Factors for Permissible	Dry Concrete	Фа				0.	65			
Periodic Inspection	Installation Conditions ^{5,6,7}	Water Saturated Concrete	фws					55			
P P		Concrete	K_{ws}		1.00						

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa

¹ Characteristic bond strength values correspond to concrete compressive strength f_c =2,500 psi (17.2 MPa). For uncracked concrete compressive strength f_c between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f_c /2,500)^{0.1} (for SI: (f_c /17.2)^{0.1}).

 $^{^2}$ Lightweight concrete may be used by applying a reduction factor as given in ACI 318-14 17.2.6 or ACI 318-11 D.3.6 as applicable.

³ Short-term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long-term concrete temperatures are roughly constant over significant periods of time. The maximum long-term service temperature is 110 °F (43 °C).

⁴ Characteristic bond strength values are for sustained loads (when noted), including dead and live loads.

⁵The tabulated value of ϕ applies when load combinations of Section 1605.2 of the IBC or ACI 318-14 5.3 (ACI 318-11 9.2), are used in accordance with ACI 318-14 17.3.3 (ACI 318-11 D.4.3). If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ shall be determined in accordance with ACI 318 D.4.4.

⁶The values of ϕ correspond to Condition B as described in ACI 318-14 17.3.3 (ACI 318-11 D.4.3) for post-installed anchors designed using the load combinations of IBC Section 1605.2. If the load combinations in ACI 318-11 Appendix C are used, the corresponding value of ϕ shall be determined.

⁷ The values of ϕ correspond to the anchor category as set forth in ACI 318-14 17.3.3 (ACI 318-11 D.4.3). The ϕ factor of 0.65 represents Category 1 and 0.55 Category 2

TECHNICAL DATA SHEET

TABLE 13 - ProAnchor Elite STEEL DESIGN INFORMATION FOR REINFORCING BARS¹

	and a first country of						Reba	ır Size					
D	Pesign Information	Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10		
Nor	ninal Anchor Diameter	d_a	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.127	1.270		
NOII	illiai Anchor Diameter	u _a	(mm)	(9.5)	(12.7)	(15.9)	(19.1)	(22.2)	(25.4)	(28.6)	(32.3)		
	Reinforcing Bar	Ase	in. ²	0.110	0.200	0.310	0.440	0.600	0.790	1.000	1.270		
Cr	ross-Sectional Area ⁴	Ase	(mm²)	(71)	(129)	(200)	(284)	(387)	(510)	(645)	(819)		
		N _{sa}	lb.	6,600	12,000	18,600	26,400						
	Nominal Strength as Governed by	, √sa	(kN)	(29.4)	(53.4)	(82.7)	(117.4)		Grade 40 rei	nforcing bars			
	Steel Strength	V _{sa}	lb.	3,960	7,200	11,160	15,840		•	ilable in sizes			
615 40		- su	(kN)	(17.6)	(32.0)	(49.6)	(70.5)			gh #6 per 1 A615			
ASTM A615 Grade 40	Reduction Factor for Seismic Shear	$lpha_{V\!,seis}$		0.70	0.74	0.78	0.82		ASTIV	TAOIS			
A	Strength Reduction Factor for Tension ³	φ					0.	75					
	Strength Reduction Factor for Shear ³	φ					0.	65					
		Δ/	lb.	8,800	16,000	24,800	35,200	48,000	63,200	80,000	101,600		
	Nominal Strength	N _{sa}	(kN)	(39.1)	(71.2)	(110.3)	(156.6)	(213.5)	(281.1)	(355.9)	(451.9)		
	Charl Charach	as Governed by Steel Strength	V _{sa}	lb.	5,280	9,600	14,880	21,120	28,800	37,920	48,000	60,960	
.706 60		v sa	(kN)	(23.5)	(42.7)	(66.2)	(93.9)	(128.1)	(168.7)	(213.5)	(271.2)		
ASTM A706 Grade 60	Reduction Factor for Seismic Shear	$lpha_{\mathit{V,seis}}$		0.70	0.74	0.78	0.82	0.73	0.63	0.53	0.42		
A -	Strength Reduction Factor for Tension ³	φ			0.75								
	Strength Reduction Factor for Shear ³	φ					0.	65					
		Δ/	lb.	9,900	18,000	27,900	39,600	54,000	71,100	90,000	114,300		
	Nominal Strength	N _{sa}	(kN)	(44.0)	(80.1)	(124.1)	(176.1)	(240.2)	(316.3)	(400.3)	(508.4)		
	as Governed by Steel Strength	1/	lb.	5,940	10,800	16,740	23,760	32,400	42,660	54,000	68,580		
615 60	oteer our enigen	V _{sa}	(kN)	(26.4)	(48.0)	(74.5)	(105.7)	(144.1)	(189.8)	(240.2)	(305.1)		
ASTM A615 Grade 60	Reduction Factor for Seismic Shear	$\alpha_{\textit{V,seis}}$		0.70	0.74	0.78	0.82	0.73	0.63	0.53	0.42		
A -	Strength Reduction Factor for Tension ³	φ					0.	75					
	Strength Reduction Factor for Shear ³	φ					0.	65					
		Λ/	lb.	11,000	20,000	31,000	44,000	60,000	79,000	100,000	127,000		
	Nominal Strength	N _{sa}	(kN)	(48.9)	(89.0)	(137.9)	(195.7)	(266.9)	(351.4)	(444.8)	(564.9)		
	as Governed by Steel Strength	V _{sa}	lb.	6,600	12,000	18,600	26,400	36,000	47,400	60,000	76,200		
.615 75		V sa	(kN)	(29.4)	(53.4)	(82.7)	(117.4)	(160.1)	(210.8)	(266.9)	(339.0)		
ASTM A615 Grade 75	Reduction Factor for Seismic Shear	$\alpha_{V,seis}$		0.70	0.74	0.78	0.82	0.73	0.63	0.53	0.42		
Α,	Strength Reduction Factor for Tension ²	φ					0.	65					
	Strength Reduction Factor for Shear ²	φ					0.	60					

For Six 1 inch = 25.4 mm, 116 + 4.448 N, 1 ps |= 0.006897 MPa
For pound-inch units: 1 mm = 0.03937 inch, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (0-2) and Eq. (0-29), as applicable. Nuts and washers shall be appropriate for the rod strength and type.

2 For use with load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of IBC section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of IBC section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of IBC section 1605.2, ACI 318-14 5.3 or ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of IBC section 1605.2 and applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of IBC section 1605.2 and applicable of the propriate value of the propriate value

TECHNICAL DATA SHEET

TABLE 14 - ProAnchor Elite CONCRETE BREAKOUT DESIGN INFORMATION FOR REINFORCING BARS

Design Information	Symbol	Units			R	einforcing	Bar Size			
3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	· ,		#3	#4	#5	#6	#7	#8	#9	#10
Minimum Embedment Depth	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2 ¾ (70)	3½ (79)	3½ (89)	3¾ (95)	4 (102)	4½ (114)	5 (127)
Maximum Embedment Depth	h _{ef,max}	in. (mm)	7 1/2 (191)	10 (254)	12 1/2 (318)	15 (381)	17 1/2 (445)	20 (508)	22 1/2 (572)	25 (635)
Effectiveness Factor Cracked Concrete	k _{c,cr}	 SI				17 (7.1)				
Effectiveness Factor Uncracked Concrete	k _{c,uncr}	SI				24 (10)				
Minimum Spacing Distance	S _{min}	in. (mm)	S _{min} = C _{min}							
Minimum Edge Distance	C _{min}	in. (mm)	2 3/16 (56)	2 13/16 (71)	3 3/4 (95)	4 3/8 (111)	5 (127)	5 5/8 (143)	6 1/4 (159)	6 7/8 (175)
Minimum Concrete Thickness	h _{min}	in. (mm)		[≥3.937]) [≥100]		h _{ef} + 20	d_0 where d_o is	s the hole d	iameter	
Critical Edge Distance (Uncracked Concrete Only)	Cac				S	ection 3.2.6 report				
Strength Reduction Factor for Tension, Concrete Failure Mode, Condition B ^{1,2}	φ		0.65							
Strength Reduction Factor for Shear, Concrete Failure Mode, Condition B ¹	φ					0.70				

For **SI**: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa

¹ Values provided for post-installed anchors with category as determined from ACI 355.4 given for Condition B. Condition B applies without supplementary reinforcement or where pullout (bond) or pryout govern, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, while condition A requires supplemental reinforcement. Values are for use with the load combinations Section 1605.2 of the IBC, ACI 318-14 5.3, or ACI 318-11 Section 9.2, as applicable, as set forth in ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ∅ shall be determined in accordance with ACI 318-11 D.4.4.

 $^{^{2}}$ The anchor category, as set forth in ACI 318-14 17.3.3 (ACI 318-11 D.4.3), is Category 1.

TECHNICAL DATA SHEET

TABLE 15 - ProAnchor Elite BOND STRENGTH DESIGN INFORMATION FOR REINFORCING BARS IN HAMMER DRILLED **HOLES**^{1,2,3,4}

		Davi				Haite				Reinforci	ng Bar Size						
		Desi	gn Informatior		Symbol	Units	#3	#4	#5	#6	#7	#8	#9	#10			
	М	inimum	Embedment [Depth	h _{ef,min}	in. (mm)	2 ³ / ₈ (60)	2¾ (70)	3½ (79)	3½ (89)	3¾ (95)	4 (102)	4 1/2 (114)	5 (127)			
	М	aximun	n Embedment I	Depth	h _{ef,max}	in. (mm)	7 1/2 (191)	10 (254)	12 1/2 (318)	15 (381)	17 1/2 (445)	20 (508)	22 1/2 (572)	25 (635)			
			ed Concrete	With Sustained Load	_	psi (MPa)	1,262 (8.7)	1,235 (8.5)	1,214 (8.4)	1,188 (8.2)	1,127 (7.8)	1,066 (7.3)	1,005 (6.9)	940 (6.5)			
Shor	kimum rt Term		racteristic d Strength	No Sustained Load	$T_{k,cr}$	psi (MPa)	1,449 (10.0)	1,422 (9.8)	1,396 (9.6)	1,366 (9.4)	1,296 (8.9)	1,227 (8.5)	1,157 (8.0)	1,079 (7.4)			
e 1	peratur L 50 °F		ncracked Concrete	With Sustained Load	T	psi (MPa)	1,897 (13.1)	1,823 (12.6)	1,749 (12.1)	1,675 (11.5)	1,605 (11.1)	1,531 (10.6)	1,457 (10.0)	1,370 (9.4)			
(6	6 °C)		racteristic d Strength	No Sustained Load	$T_{k,uncr}$	psi (MPa)	2,179 (15.0)	2,097 (14.5)	2,010 (13.9)	1,927 (13.3)	1,844 (12.7)	1,762 (12.1)	1,675 (11.5)	1,575 (10.9)			
			ed Concrete racteristic	With Sustained Load	T	psi (MPa)	1,109 (7.6)	1,088 (7.5)	1,070 (7.4)	1,044 (7.2)	992 (6.8)	940 (6.5)	887 (6.1)	827 (5.7)			
Shor	kimum rt Term		d Strength	No Sustained Load	$T_{k,cr}$	psi (MPa)	1,275 (8.8)	1,248 (8.6)	1,231 (8.5)	1,201 (8.3)	1,140 (7.9)	1,079 (7.4)	1,018 (7.0)	948 (6.5)			
e 1	Temperatur e 180 °F (82 °C)	Uncracked Concrete	With Sustained Load	T	psi (MPa)	1,666 (11.5)	1,601 (11.0)	1,540 (10.6)	1,475 (10.2)	1,409 (9.7)	1,344 (9.3)	1,279 (8.8)	1,209 (8.3)				
(0)	2 C)		racteristic d Strength	No Sustained Load	$T_{k,uncr}$	psi (MPa)	1,914 (13.2)	1,840 (12.7)	1,770 (12.2)	1,697 (11.7)	1,618 (11.2)	1,544 (10.6)	1,470 (10.1)	1,392 (9.6)			
			ed Concrete racteristic	With Sustained Load	T	psi (MPa)	507 (3.5)	498 (3.4)	488 (3.4)	474 (3.3)	451 (3.1)	428 (2.9)	405 (2.8)	377 (2.6)			
Shor	kimum rt Term		d Strength	No Sustained Load	$T_{k,cr}$	psi (MPa)	581 (4.0)	572 (3.9)	563 (3.9)	544 (3.8)	516 (3.6)	493 (3.4)	465 (3.2)	432 (3.0)			
e 2	peratur 205 °F 6 °C)	C	ncracked Concrete	With Sustained Load	T	psi (MPa)	758 (5.2)	730 (5.0)	702 (4.8)	670 (4.6)	650 (4.5)	650 (4.5)	Not App				
(9	6 C)		aracteristic d Strength	No Sustained Load	$T_{k,uncr}$	psi (MPa)	870 (6.0)	837 (5.8)	809 (5.6)	772 (5.3)	739 (5.1)	707 (4.9)	670 (4.6)	650 (4.5)			
	Reduct	tion Fac	tor for Seismic	Tension ⁵	$\alpha_{\textit{N,seis}}$				1.00			0.97	0.97	0.96			
<u>د</u> د	Streng Reducti		Dr	ry Concrete	ϕ_d					0	.65						
Continuous Inspection	Factors	-	Water Sa	aturated Concrete	ϕ_{ws}		0.	65			0.5	55					
ontir	Permissi Installat		Wate	er-Filled Holes	ϕ_{wf}				0.55				0.45	1			
U =	Condition	-	ir	n Concrete	K _{wf}				1.00			0.96	0.92	0.88			
	Streng Reducti		Dr	ry Concrete	ϕ_d					0	.65						
Periodic nspection	Factors		Water Sa	aturated Concrete	ϕ_{ws}		0.	55			0.4	15					
Periodic Inspection	Permissi Installat			er-Filled Holes	$\phi_{w\!f}$					0	.45	I		I			
For SI: 1 inch =	Condition		i = 0.006897 MPa	n Concrete	K _{wf}				1.00			0.92	0.83	0.75			

For SI: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa For pound-inch units: 1 mm = 0.03937-inch, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

For pound-inch units: 1 mm = 0.03937-inch, 1 N = 0.2248 lbf, 1 MPa = 145.0 psi

1 Characteristic bond strength values correspond to concrete compressive strength /_C = 2,500 psi (17.2 MPa). For untracked concrete compressive strength /_C between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f_C /2,500)²¹ (for 51: (f_C /17.2)²¹). For cracked concrete, no increase in bond strength is permitted.

1 Experiment of the concrete may be used by applying a reduction factor as given in ACI 318-14 17.2.6 or ACI 318-11 0.3.6 as applicable.

3 Short-term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long-term concrete temperatures are roughly constant over significant periods of time. The maximum long-term service temperature is 110 °F (43 °C).

4 Characteristic bond strength values are for sustained loads (when noted), including dead and live loads.

5 For structures in regions assigned to Seismic Design Category C, D, E, or F the bond strength values shall be multiplied by n, seis. (a)

6 The tabulated value of phylics when load combinations of Section 1605.2 of the IBC or ACI 318-11 9.2), are used in accordance with ACI 318-14 17.3.3 (ACI 318-11 10.3.4)

6 The tabulated value of phylics when load combinations of Section 1605.2 of the IBC or ACI 318-11 9.2), are used in accordance with ACI 318-14 17.3.3 (ACI 318-11 10.3.4)

6 The tabulated value of phylics when load combinations of Section 1605.2 of the IBC or ACI 318-14 17.3.3 (ACI 318-11 10.3.4)

6 The tabulated value of phylics when load combinations of Section 1605.2 of the IBC or ACI 318-14 17.3.3 (ACI 318-11 10.3.4)

6 The tabulated value of phylics when load combinations of Section 1605.2 of the IBC or ACI 318-14 17.3.3 (ACI 318-11 10.3.4)

6 The tabulated value of phylics when load combinations of Section 1605.2 of the IBC or ACI 318-14 17.3.3 (ACI 318-11 10.3.4)

The load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ shall be determined using the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ shall be determined using the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ shall be determined in accordance with ACI 318 D.4.4.

The values of ϕ correspond to Condition 8 as described in ACI 318-14 17.3.3 (ACI 318-11 D.4.3) for post-installed anchors designed using the load combinations of IBC Section 1605.2. If the load combinations in ACI 318-11 Appendix C are used, the corresponding value of ϕ shall be determined.

*The values of ϕ correspond to the anchor category as set forth in ACI 318-14 17.3.3 (ACI 318-11 D.4.3). The ϕ factor of 0.65 represents Category 1, 0.55 Category 2, and 0.45 Category 3.

TECHNICAL DATA SHEET

TABLE 16 –ProAnchor Elite BOND STRENGTH DESIGN INFORMATION FOR REINFORCING BARS IN CORE DRILLED HOLES^{1,2,3,4}

	Design Information		Symbol	Units			Rein	forcing Ba	r Size		
	Design information		Syllibol	Ullits	#4	#5	#6	#7	#8	#9	#10
	Minimum Embadment Donth		h _{ef,min}	in.	2 3/4	3 1/8	3 1/2	3 3/4	4	4 1/2	5
	Minimum Embedment Depth		l lef,min	(mm)	(70)	(79)	(89)	(95)	(102)	(114)	(127)
	Maximum Embedment Depth		h _{ef,max}	in.	10	12 1/2	15	17 1/2	20	22 1/2	25
'		rref,max	(mm)	(254)	(318)	(381)	(445)	(508)	(572)	(635)	
				psi	1,335	1,300	1,200	1,105	1,010	910	800
Maximum Short Term	Uncracked Concrete Characteristic Bond Strength	With Sustained Load	$T_{k,uncr}$	(MPa)	(9.2)	(8.9)	(8.3)	(7.6)	(7.0)	(6.3)	(5.5)
Temperature 150 °F	characteristic Boria strength	No Sustained		psi	1,530	1,490	1,380	1,270	1,155	1,045	920
(66 °C)		Load		(MPa)	(10.6)	(10.3)	(9.5)	(8.8)	(8.0)	(7.2)	(6.3)
	Uncracked Concrete Characteristic Bond Strength	With		psi	1,175	1,145	1,055	975	885	800	705
Maximum Short Term		Sustained Load	$T_{\mathit{k,uncr}}$	(MPa)	(8.1)	(7.9)	(7.3)	(6.7)	(6.1)	(5.5)	(4.9)
Temperature 180 °F	Characteristic Bond Strength	No Sustained		psi	1,350	1,315	1,215	1,120	1,020	920	810
(82 °C)		Load		(MPa)	(9.3)	(9.1)	(8.4)	(7.7)	(7.0)	(6.3)	(5.6)
ous	Strength Reduction Factors for Permissible Installation	Dry Concrete	ϕ_d					0.65			
Continuous Inspection	Conditions ^{5,6,7}	Water Saturate	ϕ_{ws}					0.65			
		d Concrete	K _{ws}					1.00			
lic ion	Strength Reduction Factors for Permissible Installation	Dry Concrete	ϕ_d		0.65						
Periodic	Conditions ^{5,6,7}	Water Saturate	ϕ_{ws}					0.55			
		d Concrete	K _{ws}			1.00					

For SI: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa

¹ Characteristic bond strength values correspond to concrete compressive strength f_c =2,500 psi (17.2 MPa). For uncracked concrete compressive strength f_c between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f'_c /2,500)^{0.1} (for SI: (f'_c /17.2)^{0.1}). For cracked concrete, no increase in bond strength is permitted.

² Lightweight concrete may be used by applying a reduction factor as given in ACI 318-14 17.2.6 or ACI 318-11 D.3.6 as applicable.

³ Short-term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long-term concrete temperatures are roughly constant over significant periods of time. The maximum long-term service temperature is 110 °F (43 °C).

⁴ Characteristic bond strength values are for sustained loads (when noted), including dead and live loads.

⁵The tabulated value of ϕ applies when load combinations of Section 1605.2 of the IBC or ACI 318-14 5.3 (ACI 318-11 9.2), are used in accordance with ACI 318-14 17.3.3 (ACI 318-11 D.4.3). If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ shall be determined in accordance with ACI 318 D.4.4.

⁶The values of φ correspond to Condition B as described in ACI 318-14 17.3.3 (ACI 318-11 D.4.3) for post-installed anchors designed using the load combinations of IBC Section 1605.2. If the load combinations in ACI 318-11 Appendix C are used, the corresponding value of φ shall be determined.

⁷ The values of ϕ correspond to the anchor category as set forth in ACI 318-14 17.3.3 (ACI 318-11 D.4.3). The ϕ factor of 0.65 represents Category 1 and 0.55 Category 2.

TECHNICAL DATA SHEET

TABLE 17 - ProAnchor Elite STEEL DESIGN INFORMATION FOR INTERNALLY THREADED INSERT¹

	Design Information	Symbol	Units	PS2-38	PS2-12	PS2-58	PS2-34	PS2-1			
	Nominal Anchor Diameter	d _a	in. (mm)	0.484 (12.3)	0.591 (15.0)	0.819 (20.8)	0.898 (22.8)	1.450 (36.8)			
	Cross-Sectional Area ⁴	A _{se}	in.² (mm²)	0.102 (66)			0.385 (248)	0.785 (506)			
	Specified Tensile Strength	F _{uta} psi 64,000									
	Nominal Strength as Governed by	N _{sa}	lb. (kN)	6,625 (29.5)	8,805 (39.2)	19,625 (87.3)	25,015 (111.3)	51,050 (227.1)			
e 1020	Steel Strength	V _{sa}	lb.	3,975	5,285	11,775	15,010	30,630			
A A29 Grade		3.0	(kN)	(17.7)	(23.5)	(52.4)	(66.8)	(136.2)			
ASTM A29 Grade 1020 Carbon Steel	Strength Reduction Factor for Tension ³	φ				0.75					
	Strength Reduction Factor for Shear ³	φ		0.65							
	Design Information	Symbol	Units	PS6-38	PS6-12	PS6-58	PS6-34	PS6-1			
	Nominal Anchor Diameter	d _a	in. (mm)	0.484 (12.3)	0.591 (15.0)	0.819 (20.8)	0.898 (22.8)	1.450 (36.8)			
	Cross-Sectional Area	Ase	in.² (mm²)	0.102 (66)	0.135 (87)	0.302 (195)	0.385 (248)	0.785 (506)			
	Specified Tensile Strength	F _{uta}	psi	100	,000		85,000				
	Nominal Strength as Governed by	N _{sa}	lb. (kN)	10,195 (45.3)	13,550 (60.3)	30,190 (134.3)	32,710 (145.5)	66,760 (297.0)			
eel	Steel Strength	V _{sa}	lb. (kN)	6,115 (27.2)	8,130 (36.2)	18,115 (80.6)	19,625 (87.3)	40,055 (178.2)			
T TE	Strength Reduction Factor for Tension ² Strength Reduction Factor for Tension ²			0.65							
Type 3		φ				0.03					

For SI: 1 inch = 25.4 mm, 1 lbf = 4.448 N, 1 psi = 0.006897 MPa

¹ Values provided for common rod material types are based on specified strength and calculated in accordance with ACI 318-14 Eq. 17.4.1.2 and Eq. 17.5.1.2b or ACI 318-11 Eq. (D-2) and Eq. (D-29), as applicable. Nuts and washers shall be appropriate for the rod strength and type.

² For use with load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ∮shall be determined in accordance with ACI 318-11 D4.4. Values correspond to a brittle steel element.

³ For use with load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 9.2, as applicable, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ shall be determined in accordance with ACI 318-11 D.4.4. Values correspond to a ductile steel element.

⁴ Cross-sectional area is the minimum stress area applicable for either tension or shear.

TECHNICAL DATA SHEET

TABLE 18 - ProAnchor Elite CONCRETE BREAKOUT DESIGN INFORMATION FOR INTERNALLY THREADED INSERT

Design Information	Symbol	Units	PS2-38 PS6-38	PS2-12 PS6-12	PS2-58 PS6-58	PS2-34 PS6-34	PS2-1 PS6-1		
Minimum Embedment Depth	ha	in. (mm)	2 3/4 (70)	3 11/16 (94)	5 3/4 (146)	6 1/2 (165)	8 1/2 (216)		
Effective Embedment Depth for Concrete Breakout Design	h _{ef,cb}	in. (mm)	2½ (64)	3½ (89)	5½ (140)	6.2 (157)	8.2 (208)		
Maximum Embedment Depth	h _{ef,max}	in. (mm)			Not Applicable				
Effectiveness Factor for Uncracked Concrete	k _{c,uncr}	SI			24 (10)				
Minimum Spacing Distance	S _{min}	in. (mm)	S _{min} = C _{min}						
Minimum Edge Distance	C _{min}	in. (mm)	2 1/2 (64)	3 1/8 (79)	4 3/8 (111)	5 (127)	7 1/2 (191)		
Minimum Concrete Thickness	h _{min}	in. (mm)	4 1/2 (114)	5 3/8 (137)	8 (203)	9½ (241)	12 1/2 (318)		
Critical Edge Distance (Uncracked Concrete Only)	C _{oc}	in.		Secti	on 3.2.6 of this r	eport			
Strength Reduction Factor for Tension, Concrete Failure Mode, Condition B ^{1,2}	φ		0.65						
Strength Reduction Factor for Shear, Concrete Failure Mode, Condition B ¹	φ		0.70						

For SI: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa

¹ Values provided for post-installed anchors with category as determined from ACI 355.4 given for Condition B. Condition B applies without supplementary reinforcement or where pullout (bond) or pryout govern, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3, as applicable, while condition A requires supplemental reinforcement. Values are for use with the load combinations Section 1605.2 of the IBC, ACI 318-14 5.3, or ACI 318-11 Section 9.2, as applicable, as set forth in ACI 318-11 D.4.3. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ∮shall be determined in accordance with ACI 318-11 D.4.4. ¹ The anchor category, as set forth in ACI 318-14 17.3.3 (ACI 318-11 D.4.3), is Category 1.

TECHNICAL DATA SHEET

TABLE 19 – ProAnchor Elite BOND STRENGTH DESIGN INFORMATION FOR INTERNALLY THREADED INSERT IN HAMMER DRILLED **HOLES**^{1,2,3,4}

		Design Information		Symbol	Units	PS2-38 PS6-38	PS2-12 PS6-12	PS2-58 PS6-58	PS2-34 PS6-34	PS2-1 PS6-1
	Ir	iternal Thread Diam	eter	d_t	inTPI	3/8 - 16	1/2 - 13	5/8 - 11	3/4 - 10	1 - 8
		Drill Bit Diameter		d_o	in.	1/2	5/8	7/8	1	1 1/2
	Recommended Drill Depth		anth	h	in.	3 1/4	4 1/8	6 1/4	7 1/2	9 1/2
	ne-	commended Drill Di	epuii	h _{drill}	(mm)	(83)	(105)	(159)	(191)	(241)
	,	Overall Anchor Leng	th	h _a	in.	2 3/4	3 11/16	5 3/4	6 1/2	8 1/2
		overall Afficitor Leng	LII	II _a	(mm)	(70)	(94)			(216)
	Pond	Effective Embedmer	at Donth	h	in.	1.550	2.488	3.750	3.744	5.000
	ВОПИТ	Effective Efficientier	п рериг	h _{ef,bond}	(mm)	(39)	(63)	(95)	(95)	(127)
Short	imum t Term	Uncracked Concrete	With Sustained Load		psi (MPa)	1,905 (13.1)	1,814 (12.5)	1,627 (11.2)	1,562 (10.8)	1,096 (7.6)
e 1	oeratur 50 °F 5 °C)	Characteristic Bond Strength	No Sustained Load	$T_{k,uncr}$	psi (MPa)	2,184 (15.1)	2,084 (14.4)	1,866 (12.9)	1,792 (12.4)	1,257 (8.7)
Short	imum t Term	Uncracked Concrete	With Sustained Load	<i>T</i> .	psi (MPa)	1,675 (11.5)	1,596 (11.0)	1,431 (9.9)	1,375 (9.5)	966 (6.7)
e 1	peratur 80 °F 2 °C)	Characteristic Bond Strength	No Sustained Load	T _{k,uncr}	psi (MPa)	1,923 (13.3)	1,831 (12.6)	1,644 (11.3)	1,575 (10.9)	1,109 (7.6)
Short	imum t Term	Uncracked Concrete	With Sustained Load		psi (MPa)	820 (5.7)	780 (5.4)	700 (4.8)	670 (4.6)	Not Applicable
e 2	oeratur . 05 °F 5 °C)	Characteristic Bond Strength	No Sustained Load	$T_{k,uncr}$	psi (MPa)	874 (6.0)	837 (5.8)	749 (5.2)	716 (4.9)	Not Applicable
ction	Strer	ngth Reduction	Dry Concrete	ϕ_d				0.65		
_	Factors for Permissible Water Saturation Conditions 5,6,7 Concre		Water Saturated Concrete	ϕ_{ws}		0.65			0.55	
Periodic Inspection	ip င် O Strength Reduction Dry		Dry Concrete	ϕ_d				0.65		
	Strength Reduction By Strength Reduction Factors for Permissible Water S Installation Conditions ^{5,6,7} Con OCSI: 1 inch = 25.4 mm, 11hf = 4.448, N. 1 nsi = 0.006897 MPa		Water Saturated Concrete	ϕ_{ws}		0.55				

For SI: 1 inch = 25.4 mm, 1lbf = 4.448 N, 1 psi = 0.006897 MPa

 $^{^1}$ Characteristic bond strength values correspond to concrete compressive strength f_C =2,500 psi (17.2 MPa). For uncracked concrete compressive strength f_C between 2,500 psi (17.2 MPa) and 8,000 psi (55.2 MPa), the tabulated characteristic bond strength may be increased by a factor of (f_C /2,500) $^{0.1}$ (for SI: (f_C /17.2) $^{0.1}$).

² Lightweight concrete may be used by applying a reduction factor as given in ACI 318-14 17.2.6 or ACI 318-11 D.3.6 as applicable.

³ Short-term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long-term concrete temperatures are roughly constant over significant periods of time. The maximum long-term service temperature is 110 °F (43 °C).

⁴ Characteristic bond strength values are for sustained loads (when noted), including dead and live loads.

⁵The tabulated value of φapplies when load combinations of Section 1605.2 of the IBC or ACI 318-14 5.3 (ACI 318-11 9.2), are used in accordance with ACI 318-14 17.3.3 (ACI 318-11 D.4.3). If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ shall be determined in accordance with ACI 318 D.4.4.

⁶The values of ϕ correspond to Condition B as described in ACI 318-14 17.3.3 (ACI 318-11 D.4.3) for post-installed anchors designed using the load combinations of IBC Section 1605.2. If the load combinations in ACI 318-11 Appendix C are used, the corresponding value of ϕ shall be determined.

The values of ϕ correspond to the anchor category as set forth in ACI 318-14 17.3.3 (ACI 318-11 D.4.3). The ϕ factor of 0.65 represents Category 1, 0.55 Category 2, and 0.45 Category 3.

TECHNICAL DATA SHEET

TABLE 20 – ProAnchor Elite PERMITTED INSTALLATIONS

			Concrete Condition								
			Uncracked			Cracked					
Anchor Type	Hole Drilling			Installatio	on Condi	tion					
	Method	Dry	Water Saturated Holes	Water-Filled Holes	Dry	Water Saturated Holes	Water-Filled Holes				
	Hammer Drill	√	✓	√	✓	√	✓				
Threaded Rod	Vacuum Drill	✓	✓	-	✓	✓	-				
Tilleaded Rod	Core Drill	✓	✓	-	-	-	-				
Dainfausina Dan	Hammer Drill	✓	✓	✓	√	✓	✓				
Reinforcing Bar	Core Drill	✓	✓	-	-	-	-				
Internally Threaded Insert	Hammer Drill	✓	✓	-	-	-	-				

TABLE 21: ProAnchor Elite Performance to ASTM C881-15^{1,2,3}

					Sample Con	ditioning Ter	nperature				
Property	Cure	ASTM	Units	Class A	Class B	Optional	Optional	Class C			
Troperty	Time	Standard	Omts	38 °F (3 °C)	50 °F (10 °C)	75 °F (24 °C)	110 °F (43 °C)	125 °F (52 °C)			
Gel Time – 60 Gram Mass ⁴		C881	Min	14	13	10	24	24			
Consistency or Viscosity		C001			Non-sag						
Compressive Yield Strength	7 day	D695	PSI (MPa)	12,980 (89.5)	13,280 (91.6)	14,480 (99.8)	14,500 (100.0)	13,430 (92.6)			
Compressive Modulus	7 day	D093	PSI (MPa)	534,900 (3,688)	506,100 (3,489)	475,900 (3,281)	599,600 (4,134)	585,600 (4,038)			
Bond Strength Hardened to	2 day		PSI (MPa)	2,700 (18.6)	2,770 (19.1)	2,780 (19.2)	3,150 (21.7)	2,050 (14.1)			
Hardened Concrete		C882	PSI (MPa)	2,860 (19.7)	2,950 (20.3)	3,110 (21.4)	3,050 (21.0)	2,080 (14.3)			
Bond Strength Fresh to Hardened Concrete	14 Day	C662	PSI (MPa)		2,730 (18.8)						
Tensile Strength ⁵		D638	PSI (MPa)			,	780 5.7)				
Tensile Elongation ⁵	7 day	D038	%				.0				
Heat Deflection Temperature		D648	°F (°C)				48 4)				
Water Absorption	14 day	D570	%			0.	02				
Linear Coefficient of Shrinkage D2566 % 0.0003											

- 1. Product testing results based on representative lot(s). Average results will vary according to the tolerances of the given property.
- 2. Full cure time is listed above to obtain the given properties for each product characteristic.
- 3. Results may vary due to environmental factors such as temperature, moisture and type of substrate.
- 4. Gel time may be lower than the minimum required for ASTM C881.
- 5. Optional testing for ASTM C881 Grade 3.

TECHNICAL DATA SHEET

FIGURE 6 – MPII FOR ProAnchor Elite HIGH STRENGTH ANCHORING EPOXY

DRILLING AND CLEANING

Hammer Drilled Holes - Dry, Water Saturated (Damp) or Water-Filled (Wet) in Cracked and Uncracked Concrete

1a. Recommended Dust Extractor System for drilling into dry and damp uncracked concrete - Attach appropriate size drill bit to the Dust Extractor Vacuum System. The drill bit should conform to ANSI B212.15 and be the appropriate size for the anchor diameter to be installed. Drill hole to the specified embedment depth.

→ GO TO STEP 6 FOR CARTRIDGE OR BULK SYSTEMS

1b. Traditional Drilling Method for dry, damp and wet cracked and uncracked concrete: Using a rotary hammer drill, and while following the manufacturer's operations manual, select appropriate size drill bit in compliance with ANSI B212.15, drill hole into the base material to the specified embedment depth. CAUTION: Always wear appropriate personal protection equipment (PPE) for eyes, ears and skin. Avoid inhalation of dust during the drilling and cleaning process. Refer to the Safety Data Sheet (SDS) for details prior to proceeding. BLOW (2X) - BRUSH (2X) - BLOW (2X)

BLOW - NOTE: Remove any standing water from hole prior to beginning the cleaning process by using oil-free
compressed air using a minimum pressure of 87 psi (6 bar). Insert the air wand to the bottom of the drilled hole and
blow out the debris with an up/down motion for a minimum of 2 seconds/cycles (2X).

3. BRUSH - Select the correct wire brush size for the drilled hole diameter, making sure that the brush is long enough to reach the bottom of the drilled hole. Reaching the bottom of the hole (use brush extension if required), brush in an up/down and twisting motion for 2 cycles (2X). CAUTION: The brush should be clean and contact the walls of the hole. If it does not, the brush is either too worn or small and should be replaced with a new brush of the correct diameter.

4. BLOW - Blow the hole out once more to remove brush debris using oil free compressed air with a minimum pressure of 87 psi (6 bar). Insert the air wand to the bottom of the drilled hole and blow out the debris with an up/down motion for a minimum of 2 seconds/cycles (2X). Visually inspect the hole to confirm it is clean. NOTE: If installation will be delayed for any reason, cover cleaned holes to prevent contamination.

→ GO TO STEP 6 FOR EITHER CARTRIDGE OR BULK SYSTEMS

Core Drilled Holes - Dry or Water Saturated (Damp) in Uncracked Concrete

Using a core drill, and while following the manufacturer's operations manual, select appropriate size drill bit. Drill
hole into the base material to the specified embedment depth. Remove center core and ensure that the specified
embedment depth can be achieved. CAUTION: Always wear appropriate personal protection equipment (PPE) for
eyes, ears and skin. Avoid inhalation of dust during the drilling and cleaning process. Refer to the Safety Data Sheet
(SDS) for details prior to proceeding.

FLUSH - Using pressurized water, place the tip of the water nozzle at the bottom or back of the drilled hole. Rinse
the drilled hole with pressurized water until the water flows clean and free of debris.
 BLOW (2X) - BRUSH (2X) - BLOW (2X)

BLOW - NOTE: Remove any standing water from hole prior to beginning the cleaning process. Using oil-free
compressed air with a minimum pressure of 87 psi (6 bar), insert the air wand to the bottom of the drilled hole and
blow out the debris with an up/down motion for a minimum of 2 seconds/cycles (2X).

4. BRUSH - Select the correct wire brush size for the drilled hole diameter, making sure that the brush is long enough to reach the bottom of the drilled hole. Reaching the bottom of the hole (use brush extension if required), brush in an up/down and twisting motion for 2 cycles (2X). CAUTION: The brush should be clean and contact the walls of the hole. If it does not, the brush is either too worn or small and should be replaced with a new brush of the correct diameter.

5. BLOW - Blow the hole out once more to remove brush debris using oil free compressed air with a minimum pressure of 87 psi (6 bar). Insert the air wand to the bottom of the drilled hole and blow out the debris with an up/down motion for a minimum of 2 seconds/cycles (2X). Visually inspect the hole to confirm it is clean. NOTE: If installation will be delayed for any reason, cover cleaned holes to prevent contamination.

→ GO TO STEP 6 FOR CARTRIDGE OR BULK SYSTEMS

DISPENSING PREPARATION

Cartridge Systems

6. CAUTION: Check the expiration date on the cartridge to ensure it is not expired. Do not use expired product! Remove the protective cap from the cartridge and insert the cartridge into the recommended dispensing tool. Before attaching mixing nozzle, balance the cartridge by dispensing a small amount of material until both components are flowing evenly. For a cleaner environment, hand mix the two components and let cure prior to disposal in accordance with local regulations.

7. Only after the cartridge has been balanced, screw on the proper Dayton Superior Corporation mixing nozzle to the cartridge. Do not modify mixing nozzle and confirm that internal mixing element is in place prior to dispensing adhesive. Take note of the air and base material temperatures and review the working/full cure time chart prior to starting the injection process.

8. Dispense an initial amount of material from the mixing nozzle onto a disposable surface until the product is a uniform gray color with no streaks, as adhesive must be properly mixed in order to perform as published. Dispose of the initial amount of adhesive according to federal, state and local regulations prior to injection into the drill hole. CAUTION: When changing cartridges, never re-use nozzles. For a new cartridge (or if working time has been exceeded), ensure that cartridge opening is clean, install a new nozzle and repeat Steps 6 and 7 accordingly. Leave the mixing nozzle attached to the cartridge upon completion of work.

→ GO TO STEP 11

TECHNICAL DATA SHEET

FIGURE 6 - MPII FOR ProAnchor Elite HIGH STRENGTH ANCHORING EPOXY (continued)

Bulk Systems

The bulk pump uses a two component delivery system whereby metering individual components and mixing of the two components are automatically controlled during dispensing through a metering manifold and disposable mixing nozzle. The bulk pump has a minimum input air pressure requirement of 80-90 psi @ 15 CFM, supplied through a regulator which reduces the pressure in order to control the rate of dispensing. The two individual adhesive components stay separate throughout the system, until they reach the specified disposable mixing nozzle via a manifold at the end of the bulk pump wand. Under normal operation, the bulk pump must be capable of dispensing the individual components at a 1:1 mix ratio by volume with a tolerance of ± 2%.

6. CAUTION: Check the expiration date on each product container to ensure it is not expired. Do not use expired product! Epoxy materials may separate. This is normal and can be expected when stored over a period of time. Part A Resin should not be remixed. Part B Hardener should be remixed with a clean 5 gallon paint stick in a "butter churning" motion to homogenize the product prior to pouring the hardener into the appropriate side of the bulk dispensing pump. CAUTION: Stir carefully to avoid whipping air into product.

7. NOTE: Review Bulk Pump Operations Manual thoroughly before proceeding and follow all steps necessary for set- up and operation of the pump. Pour Resin into Side A pump reservoir. Close lid on Side A. Pour Hardener into Side B pump reservoir. Close lid on Side B. NOTE: Fill hoppers at least one-half full. Incoming air supply pressure should be maintained at approximately 100 psi (6.9 bar). Follow bulk pump instructions for filling the metering pump and outlet assembly, then bleed the air from the system and fill the hose and applicator.

8. Balance the bulk pump machine following instructions in the Bulk Pump Operations Manual. NOTE: Be sure to establish proper flow of both materials at the applicator tip prior to attaching mixing nozzle. A ratio check should always be performed before installation begins to ensure that equal volumes of Part A and Part B are being dispensed.

After the proper pump dispensing ratio has been verified, place the appropriate mixing nozzle onto the bulk pump wand. Do not modify mixing nozzle. Confirm that the internal mixing element is in place prior to dispensing adhesive. Never use without the mixing nozzle.

10. Dispense the initial amount of material from the mixing nozzle onto a disposable surface until the product Dispose of the initial amount of adhesive according to federal, state and local regulations prior to injection into the drill hole. Take note of the air and base material temperatures and review the working/full cure time chart prior to starting the injection process.

INSTALLATION AND CURING Vertical Down, Horizontal and Overhead

11. NOTE: The engineering drawings must be followed. For any applications not covered by this document, or for installation questions, please contact Dayton Superior Corporation. Insert the mixing nozzle, using an extension tube if necessary, to the bottom of the hole and fill from the bottom to the top approximately 2/3 full, being careful not to withdraw the nozzle too quickly as this may trap air in the adhesive. For internally threaded inserts only fill the hole to approximately half. NOTE: Building Code Requirements for Structural Concrete (ACI 318-11 / ACI 318-14) requires the Installer to be certified where adhesive anchors are to be installed in horizontal or overhead installations. If extension tubing is needed, it may be connected onto the outside of the tip of both the small mixing nozzle and the large mixing nozzle. NOTE: When using a pneumatic dispensing tool, ensure that pressure is set at 90 psi (6.2 bar) maximum.

12. Piston plugs must be used for overhead installations and those between horizontal and overhead. Select the proper piston plug for the drill hole diameter. The piston plug fits directly onto the tip of both the small and large mixing nozzle. Extension tubing may also be used if needed in order to reach the bottom of the drill hole.

13. Prior to inserting the threaded rod or rebar into the hole, make sure it is straight, clean and free of oil and dirt and that the necessary embedment depth is marked on the anchor element. Insert the anchor element into the hole while turning 1-2 rotations prior to the anchor reaching the bottom of the hole. Excess adhesive should be visible on all sides of the fully installed anchor. For installing the internally threaded inserts, thread a bolt into the insert and press it into the hole with a slight twisting motion. To finish, drive the insert down with sharp blows to the head of the bolt with a hammer until it is flush with the surface of the concrete. CAUTION: Use extra care with deep embedment or high temperature installations to ensure that the working time has not elapsed prior to the anchor being fully installed.

14. For overhead installations, horizontal and inclined (between horizontal and overhead), wedges should be used to support the anchor while the adhesive is curing. Take appropriate steps to protect the exposed threads of the anchor element from uncured adhesive until after the full cure time has elapsed.

15. Do not disturb, torque or apply any load to the installed anchor until the specified full cure time has passed. The amount of time needed to reach full cure is base material temperature dependent.