SUMMARY

The Armed Forces Retirement Home (AFRH) in Washington, DC is among the oldest veterans’ retirement homes in the United States. Established in 1851, it has been a haven of care and comfort to disabled and aging veterans since before the Civil War. Located on 272 acres in the heart of the nation’s capital, the AFRH has also been home to four U.S. Presidents, including Abraham Lincoln. Today, the AFRH is home to more than 1,200 retired military personnel, a number of whom were displaced from the AFRH in Gulfport, Mississippi after the campus was devastated by Hurricane Katrina. Residents at the Washington, DC campus represent veterans who have served from World War II to Desert Storm.

To maintain the AFRH commitment to serving their residents who have served their country, the governing body of the AFRH developed a master plan to guide future development of the campus and improve the overall quality of life for the veterans who call the campus home.

In February 2011, Hensel Phelps Construction Company was awarded the design/build contract that included redevelopment of the commons area and healthcare building. Plans called for the enlargement of the existing building and revisions to a pedestrian tunnel.

CUSTOMER

• Owner: U.S. Armed Forces
• Contractor: Hensel Phelps Construction Co.

PROJECT

• Armed Forces Retirement Home
• Washington, DC

CHALLENGE

While plans called for the enlargement of the campus’ Scott Building, the building’s geometry created a forming challenge. In addition, the project would require a tie system, that could work around a number of large plates that were embedded into the existing walls.
SOLUTION

Having worked in the past with the Alisply forming system from Symons® by Dayton Superior®, Hensel Phelps Construction chose to use Sym-Ply to meet the forming challenges posed by the project. Sym-Ply’s ability to quickly and easily connect to Steel-Ply forms provided the versatility Hensel Phillips needed. Approximately 8,900 square feet of Sym-Ply was used in wall forming and grade beams during construction. In addition, Hensel Phelps utilized the company’s engineering services of Symons by Dayton Superior engineer Brenda Carr. Carr was able to design the forming tie system so that it would work around the 12” x 18” embedded wall plates. As a result of that engineering expertise and Sym-Ply versatility, the AFRH project became one of the top productive system projects in Hensel Phelps Construction history. The contractor realized a 6% increase in productivity rates, saving the company time and money.

“Symons local engineering, versatility of the Sym-Ply forming system and the ease of assembly helped us to increase our productivity on the job,” said David Wulff, Field Engineer with Hensel Phelps Construction.

RESULTS

- The contractor reported a 6% increase in productivity rates using the Sym-Ply forming system
- Sym-Ply’s ease of assembly and versatility saved contractor time and money
- Engineering services provided professional solutions to construction challenges
- The project was among the most productive in the contractor’s history
- Symons by Dayton Superior served as a single-source provider for the contractors forming solutions

RESOURCES

Learn more about the Sym-Ply forming system online at www.daytonsuperior.com/symply

Additional product information is available online at www.daytonsuperior.com. Contact your Dayton Superior representative at 888-977-9600, or send an email to info@daytonsuperior.com if you would like to discuss how these or other innovative systems can make your construction projects more productive.